• Предмет: Алгебра
  • Автор: alexandranovikova65
  • Вопрос задан 7 лет назад

Первый член геометрической прогрессии (bп) равен 2, а знаменатель равен 3. Найдите сумму шести первых членов этой прогрессии.

Ответы

Ответ дал: sachay1294
1

Ответ:

Для нахождения искомой суммы нужно воспользуемся формулой суммы первых n членов геометрической прогрессии Sn = b1*(1-q^n)/(1-q), где b1 - первый член геометрической прогрессии, q - знаменатель геометрической прогрессии. Для того, чтобы найти сумму первых шести членов прогрессии нужно подставить в данную формулу первый член геометрической прогрессии b1 и знаменатель геометрической прогрессии q из условия задачи и подсчитать полученное выражение при n=6.

По условию задачи, b1 = 2, q = 3. В таком случае

S6 = b1*(1-q^6)/(1-q) = 2*(1-3^6)/(1-3) = 2*(1-3^6)/(1-3) = 2*(1-729)/(1-3) = 2*(-728)/(1-3)= 2*(-728)/(-2) = 728

Ответ: сумма первых шести членом этой прогрессии равна 728


alexandranovikova65: Молодец
Вас заинтересует