найдите радиус окружности вписанной в параллелограмм если его диагонали равны 12см и 3корня из 2
Ответы
Ответ дал:
0
Если в параллелограмм можно вписать окружность, значит его диагонали - биссектрисы, т.е. АВСД - ромб. АС перпенд ВД (по св-ву диагоналей ромба). Пусть О - точка пересеч. диагон. и центр вписан. окр. В прям. тр-ке АОД проведем высоту ОК. Это и есть искомый радиус впис. окр.
По т. Пифагора найдем АД = кор(АОквад + ОДквад) = 9кор2/2. теперь можем найти ОК по известной формуле для высоты опущенной на гипотенузу:
ОК = АО*ОД/АД = (6*3кор2/2)/(9кор2/2) = 2 см.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад