• Предмет: Алгебра
  • Автор: diana199716
  • Вопрос задан 10 лет назад

 помогите  прошу вас : как найти D и n арифметической прогрессий an если известно что а1 = 2 an=87 Sn = 801 
  

Ответы

Ответ дал: mappku
0
a_{n}=a_{1}+(n-1)d;\
S_{n}= frac{a_{1}+a_{n}}{2}cdot n= frac{a_{1}+a_{1}+(n-1)d}{2}cdot n=frac{2a_{1}+(n-1)d}{2}cdot n \
a_{1}=2;   a_{n}=87;  S_{n}=801;\
S_{n}= frac{a_{1}+a_{n}}{2}cdot n=>
n= frac{2S_{n}}{a_{1}+a{2}}= frac{2cdt801}{2+87}= frac{1602}{89}=18;\
a_{n}-a_{1}=(n-1)d=> d=  frac{a_{n}-a_{1}}{n-1}= frac{85}{17}=5
d=5;
n=18
Ответ дал: mailforazi
0
S_n= frac{a_1+a_n}{2}n  \  \ n= frac{2S_n}{a_1+a_n}  = frac{2*801}{2+87}= 18 \  \ a_n=a_1+(n-1)d => d= frac{a_n-a_1}{n-1} = frac{87-2}{18-1} =5
Вас заинтересует