• Предмет: Алгебра
  • Автор: bellars
  • Вопрос задан 2 года назад

 \left \{ {{x+y=10} \atop { \sqrt{x} + \sqrt{y}=4 }} \right. решите пожалуйста, очень срочно нужно)) знаю, что ответы (9;1) (2;9)


Sanyasha: знаю как решать, но лееень..)
Sanyasha: во втором вырази у и вставь в первое (предварительно записав в квадрат)
Sanyasha: получится х+(4-х)^2=10
Sanyasha: а там уже по квадрату разности и пошло-поехало)
bellars: а почему я должна записать в квадрат?

Ответы

Ответ дал: chvostynia
1
Система:(из первого уравнения выражает х; и подставляет во второе): х=10-у √(10-у) + √у=4 Пешим отдельно второе уравнение: √(10-у) + √у=4 Правую и левую часть уравнения возведен в квадрат: (√(10-у) + √у)^2=4^2 10-у+2√((10-у)*у)+у=16 2√((10-у)*у)=6 √((10-у)*у)=3 Возводим правую и левую часть в квадрат: 10у-у^2=9 переносом все в правую сторону, получаем квадратное уравнения: у^2-10у+9=0 Д=100-36=64 Возвращаемся к системе, имеем две системы. Первая: у1=(10-8)/2=1 х1=10-1=9 Вторая: у2=(10+8)/2=9 х1=10-9=1 Ответ: (1;9) и (9;1)

chvostynia: Вы написали что знаете ответы. Один из них (2:9) не может быть правильным, так как координаты этой точки не удовлитворяют системы( подставте в первое уравнение)
Вас заинтересует