• Предмет: Алгебра
  • Автор: baitimirovruslan0816
  • Вопрос задан 2 года назад

Плиз быстрее надо срочно

Приложения:

Ответы

Ответ дал: MuhammadGulu
1

1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 128 \times  {( \frac{1}{8}) }^{2}  = 128  \times \frac{1}{64}  = 2 \\  { ({6}^{3}) }^{2}  \div  {36}^{5}  =  {6}^{6}  \div  {( {6}^{2}) }^{5}  =  {6}^{6}  \div  {6}^{7}  =  {6}^{ - 1}  =  \frac{1}{6}  \\  \\ 128 \times(  \frac{1}{8} ) {}^{2}  >  { ({6}^{3} )}^{2}  \div  {6}^{5}

2) \:  \:  \:  \:  \: \frac{ {8}^{3} \times  {2}^{5}  }{ {16}^{4} }  < 1 \frac{1}{8}

\frac{ {8}^{3} \times  {2}^{5}  }{ {16}^{4} }  =  \frac{ ({2 {}^{3} )}^{3}  \times  {2}^{5} }{( { {2}^{4}) }^{4} }  =  \frac{ {2}^{9} \times  {2}^{5}  }{ {2}^{16} }  =  \frac{ {2}^{14} }{ {2}^{16} }  =  \frac{1}{ {2}^{2} }  =  \frac{1}{4}  = 0.25

1 \frac{1}{8}  = 1.125[

3)13 \times  {4}^{3}  \div  {2}^{3}  >  {10}^{2}  \div  {5}^{2}  \div  {2}^{3}

{10}^{2}  \div  {5}^{2}  \div  {2}^{3}  =  {2}^{2}  \times  {5}^{2}  \div  {5}^{2}  \div  {2}^{3}  =  {2}^{ - 1}  =  \frac{1}{2}  = 0.5

4) \frac{14 \times  {3}^{2}  \div  {4}^{2}  }{2 \times  {3}^{3} } <  \frac{ {21}^{3} \times 5 }{ {7}^{3} \times  {3}^{4}  }

 \frac{14 \times  {3}^{2} \div  {4}^{2}  }{2 \times  {3}^{3} }  =  \frac{2 \times 7 \times  {3}^{2} }{2 \times  {3}^{3}  \times  {( {2}^{2}) }^{2} }  =  \frac{2 \times 7 \times  {3}^{2} }{ {2}^{5} \times  {3}^{3}  }  =  \frac{7}{ {2}^{4}  \times 3 }  =  \frac{7}{48}

 \frac{ {21}^{3} \times 5 }{ {7}^{3} \times  {3}^{4}  }  =  \frac{ {7}^{3} \times  {3}^{3} \times 5  }{ {7}^{3}  \times  {3}^{4} }  =  \frac{5}{3}  =  1\frac{2}{3}

5)( - 0.5)^{3}  \times 16 + 4 <  {2}^{3}  - 2.6

( - 0.5)^{3}  \times 16 + 4 = -  0.125 \times 16 + 4 =  - 2 + 4 = 2

 {2}^{3}  - 2.6 = 8 - 2.6 = 5.4

6) {( -  \frac{1}{4}) }^{4}  \times 243 +  {6}^{3} - 64  <   {6}^{3}  + ( { - 3)}^{2}  -  {2}^{5}

( -  \frac{1}{3}  {)}^{4}  \times 243 +  {6}^{3}  - 64 =  \frac{1}{81}  \times 243 + 216 - 64 = 3 + 216 - 64 = 219 - 64 = 155

 {6}^{3}  + ( { - 3)}^{2}  -  {2}^{5}  = 216 + 9 - 32 = 225 - 32 = 193

7) {50}^{4}   >   {2}^{4}  \div  {5}^{ - 6}

 {50}^{4}  =  {25}^{4}  \times  {2}^{4}  =  { ({5}^{2} )}^{4}   \times  {2}^{4}  =  {5}^{8}  \times  {2}^{4}

{2}^{4}  \div  {5}^{ - 6}  =  {2}^{4}  \div  \frac{1}{ {5}^{6} }  =  {2}^{4}  \times  {5}^{6}

8) {90}^{4}  < {3}^{4}  \div  {10}^{ - 6}

 {90}^{4}  =  {9}^{4}  \times  {10}^{4}  =  { ({3}^{2} )}^{4}  \times  {10}^{4}  =  {3}^{8}  \times  {10}^{4}

 {3}^{4}  \div  {10}^{ - 6}  =  {3}^{4}  \div  \frac{1}{10 {}^{6} }  =  {3}^{4}  \times  {10}^{6}

Вас заинтересует