• Предмет: Геометрия
  • Автор: exv
  • Вопрос задан 2 года назад

Помогите пожалуйста, поставлю 40!

Приложения:

Ответы

Ответ дал: democrateur
1

Відповідь:

Пояснення:

[[Number 1]]

4)

 KL^2 = KM^2 - LM^2 = 13^2-5^2 = (13-5)(13+5) = 8 \cdot 18 = 16 \cdot 9 = 4^2 \cdot 3^2 \ ;

 KL^2 = 4^2 \cdot 3^2 \ ;

 KL = 4 \cdot 3 = 12 \ ;

 S_4 = \frac{1}{2}KL \cdot LM = \frac{1}{2} \cdot 12 \cdot 5 = 30 \ ;

1)

 S_1 = \frac{1}{2}AB \cdot AC \sin{30^o} = \frac{1}{2} \cdot 6 \cdot 9 \cdot \frac{1}{2} = 13.5 \ ;

25)

 S_{25} = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{10 \cdot (10-5)(10-6)(10-9)} = \sqrt{10 \cdot 5 \cdot 4 \cdot 1 } = \sqrt{5 \cdot 2 \cdot 5 \cdot 4 \cdot 1 } = 5 \cdot 2 \sqrt{2} = 10 \sqrt{2} \ ;

19)

 S_{19} = KL \cdot KN \sin{30^o} = 15 \cdot 20 \cdot \frac{1}{2} = 150 \ ;

21)

 S_{21} = PR \cdot RQ = 25 \cdot 8 = 200 \ ;

18)

 S_{18} = AB \cdot AD = AB^2 = (4 \sqrt{2})^2 = 32 \ ;

1*)

 S_{1*} = \frac{1}{2} AC \cdot BD = \frac{1}{2} \cdot 6 \cdot 8 = 24 \ ;



[[Number 3]]

 \frac{MH}{HK} = \frac{NH}{HM} \ ;

 \frac{MH}{25} = \frac{144}{HM} \ ;

 MH^2 = 12^2 \cdot 5^2 \ ;

 MH = 12 \cdot 5 = 60 \ ;

 MN^2 = 60^2 + 144^2 = 12^2 (5^2 + 12^2) = 12^2 (25 + 144) = 12^2 \cdot 169 = 12^2 \cdot 13^2 \ ;

 MN^2 = 12^2 \cdot 13^2 \ ;

 MN = 12 \cdot 13 = 156 \ ;

 KM^2 = 60^2 + 25^2 = 5^2 (12^2 + 5^2) = 5^2 (144 + 25) = 5^2 \cdot 169 = 5^2 \cdot 13^2 \ ;

 KM^2 = 5^2 \cdot 13^2 \ ;

 KM = 5 \cdot 13 = 65 \ ;


[[Number 2 img]]

Приложения:
Вас заинтересует