• Предмет: Геометрия
  • Автор: dnd1
  • Вопрос задан 10 лет назад

прямая BF перпендикулярна к плоскости параллелограмма ABCD ,BK-высота параллелограмма,  проведенная к DC. Найдите площадь треугольника DFС если  BF=6, FK=10, площадь ABCD=40 см в квадрате. Помогите, пожалуйста, очень надо!

Использовать надо теорему о трех перпендикулярах.

Ответы

Ответ дал: shunk
0
По теореме о трех перпендикулярах Если FB перпендикулярна плоскости, BK перпендикулярна DC значит FK перпендикулярна DC и является высотой искомого треугольника.
S = 1/2  FK · DC

Из ΔFKB BK = √(FK² - FB²) = √(10² - 6²) = 8 = h
Площадь паралелограмма  S = a h ( a - основание) Если s = 40 значит DC = S/h = 40/8 = 5.

S тр = 1/2 10 · 5 = 25

Вас заинтересует