• Предмет: Математика
  • Автор: McProfessor
  • Вопрос задан 5 месяцев назад

Найти экстремум функции:
z=2x^3+5y^2-5xy+42


Срочно сыну! =)

Ответы

Ответ дал: mathkot
4

Ответ:

Функция имеет локальный минимум в точке \bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg) равный

z_{min} =  \dfrac{72451}{1728}

Пошаговое объяснение:

z = 2x^{3} + 5y^{2} - 5xy + 42

\displaystyle \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \bigg( 2x^{3} + 5y^{2} - 5xy + 42 \bigg) = 6x^{2} - 5y

\displaystyle \frac{\partial^{2} z}{\partial x^{2}} = \frac{\partial}{\partial x} \bigg( \frac{\partial z}{\partial x} \bigg) =  \frac{\partial}{\partial x} \bigg( 6x^{2} - 5y \bigg) = 12x

\displaystyle \frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \bigg( 2x^{3} + 5y^{2} - 5xy + 42 \bigg) = 10y - 5x

\displaystyle \frac{\partial^{2} z}{\partial y^{2}} = \frac{\partial}{\partial y} \bigg( \frac{\partial z}{\partial y} \bigg) =  \frac{\partial}{\partial y} \bigg( 10y - 5x \bigg) = 10

\displaystyle \frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial x} \bigg( \frac{\partial z}{\partial y} \bigg) =  \frac{\partial}{\partial x} \bigg( 10y - 5x \bigg) = -5

\displaystyle \left \{ {{\dfrac{\partial z}{\partial x}=0} \atop {\dfrac{\partial z}{\partial y}=0}} \right \ \ \left \{ {{6x^{2} - 5y = 0} \atop {10y - 5x = 0}} \right \ \left \{ {{6x^{2} = 5y} \atop {10y = 5x|:5}} \right

\displaystyle \left \{ {{x = 2y} \atop {6x^{2} = 5y}} \right \Longrightarrow 6 \cdot (2y)^{2} = 5y \Longleftrightarrow 24y^{2} = 5y

24y^{2} = 5y

24y^{2} - 5y =0

y(24y - 5) = 0

y = 0; \ \ \ 24y - 5 = 0

y = 0; \ \ \ 24y = 5 |:24

y_{1} = 0; \ \  \ y_{2} = \dfrac{5}{24}

x_{1} = 2y_{1} = 2 \cdot 0 = 0

x_{2} = 2y_{2} = 2 \cdot  \dfrac{5}{24} = \dfrac{5}{12}

\bigg( 0; 0 \bigg), \bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)

1) (0;0)

A = \displaystyle \frac{\partial^{2} z}{\partial x^{2}}  \bigg |_{(0;0)} = 12 \cdot 0 = 0

B = \displaystyle \frac{\partial^{2} z}{\partial x \partial y}  \bigg |_{(0;0)} = -5

C = \displaystyle \frac{\partial^{2} z}{\partial y^{2}}  \bigg |_{(0;0)} =10

\Delta = AC - B^{2} = 10 \cdot 0 - (-5)^{2} = -25 < 0

Так как \Delta < 0, то в данной точке функции экстремума не имеет.

2) \bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)

A = \displaystyle \frac{\partial^{2} z}{\partial x^{2}}  \Bigg |_{\bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)} = 12 \cdot \dfrac{5}{12}  = 5

B = \displaystyle \frac{\partial^{2} z}{\partial x \partial y}  \Bigg |_{\bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)} = -5

C = \displaystyle \frac{\partial^{2} z}{\partial y^{2}}  \Bigg |_{\bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)} =10

\Delta = AC - B^{2} = 10 \cdot 5 - (-5)^{2} = 50 -25 = 25 > 0

Так в данной точке \Delta > 0 и \displaystyle \frac{\partial^{2} z}{\partial x^{2}}  \Bigg |_{\bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg)} > 0, то точка  \bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg) является точкой локального минимума.

Минимум функции:

z_{min} = z\bigg(\dfrac{5}{12} ; \dfrac{5}{24} \bigg) = \dfrac{72451}{1728}


McProfessor: по центру формула даёт сбой, перепроверьте пожалуйста!)
Вас заинтересует