Катеты прямоугольного треугольника относятся как 3 : 4, а гипотенуза равна 50 мм. Найдите отрезки, на которые гипотенуза делится высотой, проведенной из вершины прямого угла. Ребза, помогите ааа
Ответы
Ответ дал:
0
Решение:
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим:

-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:

a - катет
с - гипотенуза
a с индексом с - отрезок.

А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
Ответ: 18 и 32 мм
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим:
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
a - катет
с - гипотенуза
a с индексом с - отрезок.
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
Ответ: 18 и 32 мм
Ответ дал:
0
Спасибо Огромное)))
Вас заинтересует
2 года назад
2 года назад
10 лет назад