Ответы
ЗАДАНИЕ 8
1 Сумма углов в треугольнике равна 180°
∠А + ∠B + ∠С = 180° подставим ∠А + ∠B = 100°
100° + ∠С = 180
∠С = 180° - 100° = 80°
2 Зная ∠С найдем ∠B
∠B + ∠С = 120° подставим ∠С = 80°
∠B + 80° = 120°
∠B = 120° - 80° = 40°
ОТВЕТ: ∠B = 40°
ЗАДАНИЕ 9
1 ∠KPM = ∠APH = 64° ( вертикальные углы равны)
2 Рассмотрим △APH: ∠P = 64°
∠H = 90° (т.к. КН - высота)
∠А = 180°-∠P-∠А = 180°-64°-90° = 26°
3 ∠KАM = ∠MAB = 26° (т.к. AM - медиана)
∠KАB = ∠KАM + ∠MAB = 26° + 26° = 52° (∠А в △KAB)
4 Рассмотрим △KAB: ∠K = 90°
∠A = 52°
∠B = 180°-∠K-∠А = 180°-90°-52° = 38°
ОТВЕТ: ∠B = 38°
ЗАДАНИЕ 10
1 ∠FCH = ∠HСR = ∠FCR/2 = 130/2 = 65° (т.к. СH бисектриса)
2 ∠РНС = 180° - ∠СPH - ∠РСH = 180° - 90° - 15° = 75°
3 ∠РНС и ∠СHR смежные
∠СHR = 180° - ∠РНС = 180°- 75° = 105°
4 рассмотрим △СHR: ∠HСR = 65°
∠СHR = 105°
∠СRH = 180°- ∠HСR- ∠СHR =180°- 65°- 105° = 10°
ОТВЕТ: ∠СRH = 10°