Ответы
Ответ дал:
0
Ответ:y ln(y/x) = x ln(ln(y/x)) + C
Пошаговое объяснение:
Перепишем его в более удобном виде:
y' - (y/x) = x/(xln(y/x))
Для решения данного уравнения воспользуемся методом интегрирующего множителя. Пусть множитель равен u(y/x), тогда:
u'(y/x) = x/(xln(y/x))
u = ln(ln(y/x))
Умножим обе части уравнения на u:
y ln(y/x) = x ln(ln(y/x)) + C
где C - произвольная постоянная интегрирования.
Таким образом, решение данного уравнения имеет вид:
y ln(y/x) = x ln(ln(y/x)) + C
где C - произвольная постоянная.
Вас заинтересует
1 год назад
1 год назад
3 года назад
3 года назад
8 лет назад