докажите, что если биссектриса внешнего угла треугольника параллельна его третьей стороне, то треугольник равносоронний.
Ответы
Ответ дал:
0
Ответ:
Пусть ABC – данный треугольник, CK – биссектриса внешнего угла BСD, CK || AB.
CK – биссектриса внешнего угла BСD, значит угол BCK=угол DCK
CK || AB, по свойству параллельных прямых угол CAB=угол DCK
По свойству внешнего угла внешний угол BCD=2*угол DCK=угол CAB+уголACB=
= угол DCK+ уголACB, отсюда
уголACB= угол DCK= угол CAB
уголACB= угол CAB, значит треугольник ABC равнобедренный по свойству равнобедренного треугольника, причем AC=BC.
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
3 года назад
3 года назад
8 лет назад