Ответы
Ответ дал:
1
Ответ:
Найдем векторы AV и AS:
AV = (5-3; -2-(-1); 7-2) = (2; -1; 5)
AS = (0-3; 1-(-1); -2-2) = (-3; 2; -4)
Скалярное произведение векторов AV и AS равно
AV · AS = 2*(-3) + (-1)*2 + 5*(-4) = -6 - 2 - 20 = -28
Длина вектора AV равна |AV| = √(2^2 + (-1)^2 + 5^2) = √30
Длина вектора AS равна |AS| = √((-3)^2 + 2^2 + (-4)^2) = √29
Теперь можно найти косинус угла между векторами:
cos(φ) = (AV · AS) / (|AV| * |AS|) = -28 / (√30 * √29) ≈ -0.942
Угол φ между векторами AV и AS равен arccos(-0.942) ≈ 150.4°. Ответ: 150.4°.
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
3 года назад
8 лет назад
8 лет назад