• Предмет: Геометрия
  • Автор: golubevasofi
  • Вопрос задан 10 лет назад

из точки В к окружности проведены касательные ВР и ВQ (P и Q - точки касания). найдите длину хорды PQ, если длина отрезка BP= 40, а растояние от центра окружности до хорды PQ равно 18

Ответы

Ответ дал: nafanya2014
0
Отрезки касательных BP и BQ  равны по свойству касатльной проведенной к оружности из одной точки . Значит треугольник BPQ -равнобедренный с боковой стороной 40.
Обозначим точку пересечения прямой ВО с окружностью буквой К, с отрезком PQ буквой М.
Пусть PM=x, тогда MQ тоже х ( диаметр перпендикулярный хорде делит её пополам) по теореме Пифагора из треугольника OMQ  R²=18²+x²
Из треугольника PBM   BM²= 40²-x²=1600-R²-324=1276-R².
Теперь надо применить Свойство касательной и секущей.
Произведение секущей на её внешнюю часть равно квадрату касательной.
Но выражения очень большие.
Ответ дал: nafanya2014
0
Уточните условие. Может радиус дан?
Вас заинтересует