• Предмет: Алгебра
  • Автор: Popa78657
  • Вопрос задан 1 год назад

ДАМ 100 БАЛЛОВ ,Помогите решить все задачи пожалуйста

Приложения:

Ответы

Ответ дал: сок111213
0

3.

\displaystyle\bf\\\left \{ {{3 {x}^{2} + 4x + 1 \geqslant 0 } \atop {5x - 1 < 0 }} \right. \\ \\ 1) \: 3 {x}^{2}  + 4x + 1 = 0 \\ 3 {x}^{2}  + 4x + 1 = 0 \\ a =  3\\ b =4  \\ c = 1 \\ D =  {b}^{2}  - 4ac =  {4}^{2}  - 4 \times 3 \times 1 = 16 - 12 = 4 \\ x_{1} =  \frac{ - 4 - 2}{2 \times 3} =  -  \frac{6}{6}    =  - 1\\ x_{2} =  \frac{ - 4 + 2}{2 \times 3}  =  -  \frac{2}{6}  =  -  \frac{1}{3}  \\  \\ {ax}^{2}  + bx + c = a(x - x_{1})(x - x_{2}) \\ 3 {x}^{2}  +4 x + 1 =3 (x + 1)(x +  \frac{1}{3} ) \\  \\ (x + 1)(x +  \frac{1}{3} ) \geqslant 0 \\ +  +  +  [ - 1] -  -  - [ -  \frac{1}{3} ] +  +  +  \\ x \leqslant  - 1 \:  \:  \: and \:  \:  \: x \geqslant  -  \frac{1}{3}  \\  \\ 2) \: 5x - 1 < 0 \\ 5x < 1 \\ x < 0.2 \\  \displaystyle\bf\\3) \: \left \{ {{x \leqslant  - 1 \:  \:  \: and \:  \:  \: x \geqslant  -  \frac{1}{3} } \atop {x < 0.2 }} \right. \\ \\ x \: \epsilon \: ( - \propto; \:  - 1]U[ -  \frac{1}{3} ; \: 0.2)

4.

 \frac{(2 - x) {}^{2} }{2 {x}^{2} - 5x + 2 }  \\ 2 {x}^{2}  - 5x + 2 = 0 \\ a =  2\\ b =  - 5 \\ c =  2\\ D =  {b}^{2}  - 4ac = ( - 5) {}^{2}  - 4 \times 2 \times 2 = 25 - 16 = 9 \\ x_{1} =   \frac{5 - 3}{2 \times 2} =  \frac{2}{4}   = 0.5\\ x_{2} =  \frac{5 + 3}{2 \times 2}  =  \frac{8}{4}  = 2 \\  2 {x}^{2}  - 5x + 2 = 2(x - 0.5)(x - 2) \\  \\  \frac{(x - 2) {}^{2} }{(x - 0.5)(x - 2)}  \\ (x - 2) {}^{3} (x - 0.5)

Нет знака неравенства

5.

\displaystyle\bf\\\left \{ {{2 {x}^{2} - 5x + 3 \geqslant 0 } \atop { {x}^{2} < 64  }} \right. \\ \\ 1) \: 2 {x}^{2}  - 5x + 3 \geqslant 0 \\ 2 {x}^{2}   - 5x + 3 = 0 \\ a = 2 \\ b = - 5  \\ c =  3\\ D =  {b}^{2}  - 4ac = ( - 5) {}^{2}  - 4 \times 2 \times 3 = 25 - 24 = 1 \\ x_{1} = \frac{5 - 1}{2 \times 2}    =  \frac{4}{4} = 1 \\ x_{2} =  \frac{5 + 1}{2 \times 2}  =  \frac{6}{4}  =  \frac{3}{2}  = 1.5 \\ 2 {x}^{2}  - 5x + 3 = 2(x - 1)(x - 1.5) \\  \\ (x - 1)(x - 1.5) \geqslant 0 \\ +  +  +  [1] -  -  - [1.5] +  +  +  \\ x \leqslant 1 \:  \:  \: and \:  \:  \: x \geqslant 1.5 \\  \\ 2) \:  {x}^{2}  < 64 \\  {x}^{2}  - 64 < 0 \\ (x - 8)(x + 8) < 0 \\  +  +  + ( - 8)  -  -  - (8) +  +  +  \\  - 8 < x < 8 \\ \displaystyle\bf\\3) \: \left \{ {{x \leqslant 1 \:  \:  \: and \:  \:  \: x \geqslant 1.5} \atop { - 8 < x < 8 }} \right. \\ \\ x \: \epsilon \: ( - 8; \: 1]U[1.5; \: 8)

Вас заинтересует