• Предмет: Алгебра
  • Автор: aisa30176
  • Вопрос задан 1 год назад

помогите с 52, 53, 55 пожалуйста ​

Приложения:

Аноним: Кину відповідьв телегу мені hahobn
ГАЗ52: 52) а, 53)д

Ответы

Ответ дал: Universalka
1

\displaystyle\bf\\52)\\\\b_{1} =64\sqrt{2} \\\\b_{3}= 4\sqrt{2} \\\\b_{3}=b_{1} \cdot q^{2}  \\\\q^{2} =\frac{b_{3} }{b_{1} } =\frac{4\sqrt{2} }{64\sqrt{2} } =\frac{1}{16} \\\\\\q_{1,2} =\pm \ \sqrt{\frac{1}{16} }=\pm \ \frac{1}{4} \\\\\\Otvet \ : \ A)\\\\53)\\\\\left \{ {{b_{4} +b_{5}=72 } \atop {b_{4}=2b_{3}  }} \right. \\\\\\\left \{ {{b_{1} q^{3}+b_{1} q^{4} =72 } \atop {b_{1}q^{3}=2b_{1} q^{2}   }} \right. \\\\\\\left \{ {{b_{1} \cdot(q^{3} + q^{4} )=72} \atop {q=2}} \right.

\displaystyle\bf\\\left \{ {{b_{1} \cdot(2^{3} + 2^{4} )=72} \atop {q=2}} \right. \\\\\\\left \{ {24{b_{1} =72} \atop {q=2}} \right. \\\\\\\left \{ {{b_{1} =3} \atop {q=2}} \right. \\\\\\S_{4} =\frac{b_{1}\cdot(q^{4} -1) }{q-1} =\frac{3\cdot(2^{4} -1) }{2-1} =3\cdot15=45\\\\\\Otvet \ D)\\\\55)\\\\b_{3}=\sqrt{5} \\\\b_{1} q^{2} =\sqrt{5}

Произведение первых n членов геометрической прогрессии вычисляется по формуле :

\displaystyle\bf\\P_{n} =\Big(b_{1}\cdot b_{n}\Big)^{\dfrac{n}{2} }

В нашем задании надо найти произведение пяти первых членов , значит в нашем случае n = 5.

\displaystyle\bf\\P_{5} =\Big(b_{1} \cdot b_{5} \Big)^{\dfrac{5}{2} } =\Big(b_{1} \cdot b_{1}\cdot q^{4}  \Big)^{\dfrac{5}{2} } =\Big[\Big(b_{1} \cdot q^{2}  \Big)^{2}\Big] ^{\dfrac{5}{2} } =\\\\\\=b_{3}^{5} =\Big(\sqrt{5}\Big)^{5} =25\sqrt{5} \\\\\\Otvet \ : \ A)


Universalka: Вот сейчас ГАЗ52 точно меня похвалит :))
Вас заинтересует