Ответы
Ответ дал:
0
Функция y=(sinx)^2 периодическая с периодом π. Для того чтобы доказать периодичность функции, нужно показать, что для любого x выполняется равенство f(x+T)=f(x), где T - период функции.
Для функции y=(sinx)² имеем f(x+π)=(sin(x+π))²=(sinx)².
Таким образом, f(x+π)=f(x), что означает периодичность функции с периодом π.
Вас заинтересует
1 год назад
1 год назад
1 год назад
3 года назад
3 года назад