ПЛІЗ ДОПОМОЖІТЬ
Знайдіть площу діагонального перерізу правильної чотирикутної піраміди, апофеоз якої дорівнює 25 см, а бічне ребро - √674 см. Бажано з малюнком
                        
                            
                            
                    Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    1
                                                
                                            
                                        
                                    Ответ: S = 168√2.
Объяснение:
Знайдіть площу діагонального перерізу правильної чотирикутної піраміди, апофема якої дорівнює 25 см, а бічне ребро - √674 см. Бажано з малюнком.
Сторона основания (это квадрат) а = 2√(674 - 25²) = 2√(674 – 625) = 2√49 = 14.
Диагональ основания (она будет основанием равнобедренного треугольника в заданном сечении) равна d = a√2 = 14√2.
Высота пирамиды и треугольника сечения равна:
H = √(674 – (d/2)²) = √(674 – (14√2/2)²) =√(674 – 98) =√576 = 24.
Площадь сечения S = (1/2)dH = (1/2)*(14√2)*24 = 168√2.
Или примерно 237,588 кв. ед.
Приложения:
                    
                            Вас заинтересует
                
                        1 год назад
                    
                
                        1 год назад
                    
                
                        2 года назад
                    
                
                        8 лет назад