• Предмет: Геометрия
  • Автор: sozonukilla36
  • Вопрос задан 1 год назад

На відрізку АВ лежить точка С. Довжина відрізка AB = 90 см. Знайдіть довжину відрізків ВС і AC, якщо відрізок АС у 4 рази коротший за відрізок ВС.​

Ответы

Ответ дал: II0perkzz
0
Нехай довжина відрізка AC дорівнює х см, а довжина відрізка ВС дорівнює 4х см.

За умовою задачі відрізок АС у 4 рази коротший за відрізок ВС, отже, ми можемо написати рівняння:

\(AC = 4x\) см

Також відомо, що довжина відрізка AB дорівнює 90 см. Відрізок AB можна розділити на дві частини: AC і ВС. Таким чином, сума довжин цих двох відрізків повинна дорівнювати 90 см:

\(AC + BC = 90\) см

Ми вже знаємо, що \(AC = 4x\). Підставимо це значення у рівняння:

\(4x + BC = 90\)

Таким чином, нам потрібно розв'язати це рівняння щодо x, щоб знайти довжину відрізків ВС і AC.
Ответ дал: aa2mymail
1

Ответ:Щоб вирішити це завдання, нам треба використати дану інформацію про співвідношення довжин відрізків.

Довжина відрізка AC є 4 рази коротшою за довжину відрізка ВС. Записавши це математично, ми можемо сказати, що:

AC = (1/4) * ВС

Також відомо, що сума довжин відрізків AC і ВС дорівнює довжині відрізка AB. Тобто:

AC + ВС = AB

Підставимо умови задачі в це рівняння, отримаємо:

(1/4) * ВС + ВС = 90 см

Тепер ми можемо розв'язати це рівняння та знайти значення ВС:

(1/4) * ВС + ВС = 90 см

(5/4) * ВС = 90 см

ВС = (90 см) * (4/5)

ВС = 72 см

Отже, довжина відрізка ВС дорівнює 72 см.

Тепер, підставимо значення ВС у вираз для AC, щоб знайти його довжину:

AC = (1/4) * ВС

AC = (1/4) * 72 см

AC = 18 см

Отже, довжина відрізка AC дорівнює 18 см.  

Объяснение:

Вас заинтересует