Ответы
Ответ дал:
0
For the first question, let's simplify the expression:
$\frac{a^2 + 2ab}{a^2} : \frac{a^2 + 4ab + 4b^2}{ab}$
To simplify this expression, we can rewrite the division as multiplication by the reciprocal:
$\frac{a^2 + 2ab}{a^2} \cdot \frac{ab}{a^2 + 4ab + 4b^2}$
Now, let's simplify the numerator and denominator separately:
Numerator:
$a^2 + 2ab$
Denominator:
$a^2 + 4ab + 4b^2$
Now, let's substitute these simplified expressions back into the original expression:
$\frac{a^2 + 2ab}{a^2} \cdot \frac{ab}{a^2 + 4ab + 4b^2}$
$= \frac{(a^2 + 2ab) \cdot ab}{a^2 \cdot (a^2 + 4ab + 4b^2)}$
$= \frac{a^3b + 2a^2b^2}{a^4 + 4a^3b + 4a^2b^2}$
Therefore, the simplified expression is $\frac{a^3b + 2a^2b^2}{a^4 + 4a^3b + 4a^2b^2}$.
$\frac{a^2 + 2ab}{a^2} : \frac{a^2 + 4ab + 4b^2}{ab}$
To simplify this expression, we can rewrite the division as multiplication by the reciprocal:
$\frac{a^2 + 2ab}{a^2} \cdot \frac{ab}{a^2 + 4ab + 4b^2}$
Now, let's simplify the numerator and denominator separately:
Numerator:
$a^2 + 2ab$
Denominator:
$a^2 + 4ab + 4b^2$
Now, let's substitute these simplified expressions back into the original expression:
$\frac{a^2 + 2ab}{a^2} \cdot \frac{ab}{a^2 + 4ab + 4b^2}$
$= \frac{(a^2 + 2ab) \cdot ab}{a^2 \cdot (a^2 + 4ab + 4b^2)}$
$= \frac{a^3b + 2a^2b^2}{a^4 + 4a^3b + 4a^2b^2}$
Therefore, the simplified expression is $\frac{a^3b + 2a^2b^2}{a^4 + 4a^3b + 4a^2b^2}$.
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад