• Предмет: Геометрия
  • Автор: worldhi
  • Вопрос задан 10 лет назад

в треугольнике авс проведены биссектриса ак и отрезок мк, причем точка м лежит на стороне ас и мк параллельно ав. докажите что амк равнобедренный, пожалуйста помогите!!!!

Ответы

Ответ дал: nafanya2014
0
угол ВАК= углу КАМ  по условию сказано, что АК - биссектриса,
угол ВАК =  углу АКМ  - внутренние накрест лежащие при параллельных прямых АВ и КМ и секущей АК. Треугольник АКМ - равнобедренных. Два угла равны
Ответ дал: matveev0508
0
АК-биссектриса делит угол А пополам ,т.е. угол  МАК=ВАК ,по условию МК параллельна АВ ,значит углы ВАК и АКМ а также МАК и ВКА - внутренние накрестлежащие и поэтому равны.Таким образом ,угол МАК= АКМ , значит треугольник АМК-равнобедренный , т.к. углы при основании равны.
Вас заинтересует