• Предмет: Математика
  • Автор: LALALLALLALAALA54
  • Вопрос задан 1 год назад

Решите данные уравнения с помощью правил нахождения неизвестного компонента уравнения:

а) 78 − (x − 35) = 15 (14 баллов)

б) 2x + 6x + 95 = 575 (14 баллов)

в) (x + 59) : 49 = 16 (14 баллов)

г) (83 − 7у) ∙ 10 – 450 = 100 (17 баллов).

Ответы

Ответ дал: milana7220
1

Ответ:

а) \(78 - (x - 35) = 15\)

Решение:

\(78 - x + 35 = 15\)

\(-x = 15 - 78 - 35\)

\(-x = -98\)

\(x = 98\)

б) \(2x + 6x + 95 = 575\)

Решение:

\(8x + 95 = 575\)

\(8x = 575 - 95\)

\(8x = 480\)

\(x = \frac{480}{8}\)

\(x = 60\)

в) \((x + 59) \div 49 = 16\)

Решение:

\(\frac{x + 59}{49} = 16\)

\(x + 59 = 16 \times 49\)

\(x + 59 = 784\)

\(x = 784 - 59\)

\(x = 725\)

г) \((83 - 7y) \times 10 - 450 = 100\)

Решение:

\((830 - 70y) - 450 = 100\)

\(830 - 70y - 450 = 100\)

\(-70y = 100 - 830 + 450\)

\(-70y = -280\)

\(y = \frac{-280}{-70}\)

\(y = 4\)

Вас заинтересует