• Предмет: Алгебра
  • Автор: sasha57
  • Вопрос задан 10 лет назад

Один из корней уравнения x2-26x+q=0 равен 12 найдите другой корень и свободный член q

Ответы

Ответ дал: Hrisula
0

 Задача на применение теоремы Виета: 

Она гласит:

Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равен единице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:

x₁ + x₂= -p
x₁ · x₂= q

 

12 + x₂ = 26
x₂=26-12=14
q=12 · 14=168


x²-26x+168=0 - при желании можно проверить, подставив в уравнение корни, можно для проверки решить через дискриминант. 

Я проверила. Все правильно. 


Вас заинтересует