• Предмет: Алгебра
  • Автор: Mariian
  • Вопрос задан 10 лет назад

Докажите, что разность квадратов двух последовательных целых чисел равна сумме этих чисел.

Ответы

Ответ дал: NNNLLL54
0
nin Z,quad n+1in Z\\(n+1)^2-n^2==n^2+2n+1-n^2=2n+1\\n+(n+1)=2n+1
Ответ дал: Аноним
0
2 послед целых числа n и n+1. n-целое. (n+1)^2-n^2=(n+1-n)(n+1+n)=2n+1 сумма 2 послед n+n+1=2n+1 то есть разность квадратов равна сумме
Вас заинтересует