В параллелограмме ABCD AE - биссектриса угла А. Стороны параллелограмма АВ и ВС относятся как 4 : 9. АЕ пересекает диагональ BD в точке К. Найти отношение ВК : КD.
можно только без теоремы синусов :с
Ответы
Ответ дал:
0
Так как противолежащие стороны параллелограмма равны (BC=AD,AB=CD),
то AB/BC=AB/AD=4/9.
Рассмотрим треугольник ABD:
так как AK - биссектриса угла A, то BK/KD=AB/AD=4/9 (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон).
Ответ: 4:9
то AB/BC=AB/AD=4/9.
Рассмотрим треугольник ABD:
так как AK - биссектриса угла A, то BK/KD=AB/AD=4/9 (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон).
Ответ: 4:9
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад