Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM .
ПОМОГИТЕ РЕШИТЬ ПОЖАЛУЙСТА!
Ответы
Ответ дал:
0
Пусть площадь треугольника ABC=S.
1) S(площадь) треугольника AВM=S(площади) треугольника MBC (как равновеликие). Тогда, S треугольника ABC=2 S треугольника MBC=
2) Рассмотри треугольник ABM.
S треугольника ABK=S треугольника AKM =
(Т.к. АК-медиана и треугольника равновеликие).
3) Дополнительное построение:
Из т. М проведём МD параллельно АР. АМ=МС, следовательно,
по теореме Фалеса. PD=DC (отсекает равны отрезки).
4). Рассмотри треугольник ВМDю
По теореме Фалеса ВР=РD, т.к. АК-медиана. Следовательно, ВР=PD=DC.
5) Рассмотрим треугольник ABP.
S треугольника ABP=
S(площади) треугольника АВС,
т.к. высота h-единственная, BP=PD=DC.
Тогда S треугольника АРС=
S (площади) ABC.
6) S треугольника АКM=
S четырёхугольника KPCM=S APC-AKM=
7)
Ответ:
P.S. не забудьте ответ отметить как "лучший". Я единственный, кто решит Вам эту задачу на этом сайте.
1) S(площадь) треугольника AВM=S(площади) треугольника MBC (как равновеликие). Тогда, S треугольника ABC=2 S треугольника MBC=
2) Рассмотри треугольник ABM.
S треугольника ABK=S треугольника AKM =
3) Дополнительное построение:
Из т. М проведём МD параллельно АР. АМ=МС, следовательно,
по теореме Фалеса. PD=DC (отсекает равны отрезки).
4). Рассмотри треугольник ВМDю
По теореме Фалеса ВР=РD, т.к. АК-медиана. Следовательно, ВР=PD=DC.
5) Рассмотрим треугольник ABP.
S треугольника ABP=
т.к. высота h-единственная, BP=PD=DC.
Тогда S треугольника АРС=
6) S треугольника АКM=
S четырёхугольника KPCM=S APC-AKM=
7)
Ответ:
P.S. не забудьте ответ отметить как "лучший". Я единственный, кто решит Вам эту задачу на этом сайте.
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад