Із точки до прямої проведено дві похилі,проекції яких напряму дорівнюють 9 см і 16 см.Знайдіть відстань від точки до прямої,якщо одна одна з похилих на 5 см більша від іншої.
Ответы
Ответ дал:
0
Обозначим точку, из которой опущены наклонные, В, а основания наклонных - А и С
Соединив основания наклонных, получим треугольник АВС.
Из точки В, как из вершины треугольника, опустим на основание АС высоту Вh. Это - расстояние от точки В до прямой АС.
Аh- проекция наклонной АВ и равна 9 см
Сh - проекция наклонной ВС и равна 16 см.
Известно, что ВС больше АВ на 5 см.
Составим уравнение нахождения высоты Вh из треугольников АВh и СВh, приравняв выражения.
Вh² = АВ²-Аh²
Вh² = ВС²-hС²
АВ²-Аh²= ВС²-hС²
АВ²-81=(АВ +5)² -256
АВ²-81=АВ² +10 АВ+25 -256
10 АВ=150
АВ=15 см
Вh² = 225--81
Вh² =144
Вh=12 см
Ответ: Расстояние от точки В до прямой 12 см
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад