Ответы
Ответ дал:
0
y(0)=0
y(3П/2)=-2 - минимум
y'=2cosx+2cos2xcos2x+cosx=02cos^2x+cosx-1=02t^2+t-1=0t=-1t=1/2cosx=-1 x=П сosx=1/2 x=П/3
y''=-2sinx-4sin2x
y''(П/3)<0y(П/3)=sqrt(3)+sin(2п/3)=2sqrt(3) - максимум.Вроде так)
y(3П/2)=-2 - минимум
y'=2cosx+2cos2xcos2x+cosx=02cos^2x+cosx-1=02t^2+t-1=0t=-1t=1/2cosx=-1 x=П сosx=1/2 x=П/3
y''=-2sinx-4sin2x
y''(П/3)<0y(П/3)=sqrt(3)+sin(2п/3)=2sqrt(3) - максимум.Вроде так)
Ответ дал:
0
Находим производную функции

Приравниваем к нулю и решаем тригонометрическое уравнение
2cosx+2cos2x=0



x=π+2πn
Находим значение в стационарной точки и на концах промежутка
y(0)= 2π+πn
y(π+2πn)= 0
y(3π/2)= -2
Таким образом
y(3π/2) - min
y(0) - max
Приравниваем к нулю и решаем тригонометрическое уравнение
2cosx+2cos2x=0
x=π+2πn
Находим значение в стационарной точки и на концах промежутка
y(0)= 2π+πn
y(π+2πn)= 0
y(3π/2)= -2
Таким образом
y(3π/2) - min
y(0) - max
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад