Помогите пожалуйста.
Диагонали параллелограмма ABCD пересекаются в точке O. Saob=9. Найдите площадь параллелограмма ABCD.
Ответы
Ответ дал:
0
1) По формуле площади четырехугольника:
S = d 1 * d2* sinα
Где α - угол между диагоналями, в данном случае - угол АОВ.
2) По свойству параллелограмма его диагонали точкой пересечения делятся пополам, то есть АО = ОС, ВО = ОД.
3) Площадь ΔАОВ может вычисляться по формуле:
S = AO*OB*sinα/2.
Теперь запишем эту формулу для полных диагоналей:
S =
= 
Сравним с площадью параллелограмма:
S = d1* d2 * sinα/2
Тогда можно увидеть, что площадь треугольника в четыре раза меньше площади параллелограмма. Значит, его площадь равна 9*4=36.
S = d 1 * d2* sinα
Где α - угол между диагоналями, в данном случае - угол АОВ.
2) По свойству параллелограмма его диагонали точкой пересечения делятся пополам, то есть АО = ОС, ВО = ОД.
3) Площадь ΔАОВ может вычисляться по формуле:
S = AO*OB*sinα/2.
Теперь запишем эту формулу для полных диагоналей:
S =
Сравним с площадью параллелограмма:
S = d1* d2 * sinα/2
Тогда можно увидеть, что площадь треугольника в четыре раза меньше площади параллелограмма. Значит, его площадь равна 9*4=36.
Ответ дал:
0
Спасибо огромное))
Вас заинтересует
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад