Ответы
Ответ дал:
0
n-ый член геометрической прогрессии рассчитывается по формуле
bn=b₁*qⁿ⁻¹,
где b₁ - первый член геометрической прогрессии,
q - знаменатель геометрической прогрессии.
По условиям задачи b₁=-247, q=2
Найдем четвертый член геометрической прогрессии:
b₄=b₁*q⁴⁻¹=b₁*q³=(-247)*2³=(-247)*8=-1976
Ответ: b₄=-1976
bn=b₁*qⁿ⁻¹,
где b₁ - первый член геометрической прогрессии,
q - знаменатель геометрической прогрессии.
По условиям задачи b₁=-247, q=2
Найдем четвертый член геометрической прогрессии:
b₄=b₁*q⁴⁻¹=b₁*q³=(-247)*2³=(-247)*8=-1976
Ответ: b₄=-1976
Вас заинтересует
2 года назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад