В цилиндр вписана правильная четырехугольная призма, какого отношение площади боковой поверхности призмы к цилидру?
помогите пожалуйста
Ответы
Ответ дал:
0
основание призмы - квадрат АВСД вписанный в окружность радиуса R с цетром О, высота призмы и цилиндра динакова и равна Н
строна квадрата ВС=√(R^2+R^2)=R√2
боковая поверхность цилиндра равна 2n*R*H
боковая поверхность призмы равна (R√2 *H)*4
Sбок.приз./Sбок.цил. = (4RH√2)/2n*R*H=(2√2)/n
строна квадрата ВС=√(R^2+R^2)=R√2
боковая поверхность цилиндра равна 2n*R*H
боковая поверхность призмы равна (R√2 *H)*4
Sбок.приз./Sбок.цил. = (4RH√2)/2n*R*H=(2√2)/n
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад