• Предмет: Математика
  • Автор: vipz3
  • Вопрос задан 10 лет назад

Сумма всех трехзначных чисел, составленных из трех различных, отличающихся от нуля, цифр k, l, m, больше 2700, но не превосходит 2900. Каждая из указанных цифр встречается в записи числа один раз. Найти число 100k+10l+m, если известно, что оно четное и наибольшее из всех трехзначных чисел, удовлетворяющих условиям задачи.

Ответы

Ответ дал: mathgenius
0
таких  трехзначных  чисел всего  6
Причем по  десяткам  они встречаются по  2 раза всего  их 6.
Тогда если  сложить все числа  и отдельно по  разрядам  получим.
S=2*(k+l+m)*100+2*(k+l+m)*10+2(k+l+m)=(k+l+m)*(200+20+2)=222*(k+l+m)
    2700<222(k+l+m)<2900
То  есть  сумма  делится  на 222
между  числами  2700  и 2900  есть  только 1  число  делящееся  на 222
2886=222*13 тк  222*12=2663<2700   222*14=3108>2900
то  есть  k+l+m=13
по условию  цифра m четная
но  цифра k наибольшая(тк 100k+10l+m  наибольшее  четное 3 значное и все цифры  отличны от   нуля 
То  есть  m<L<k m-четное число
Положим что m=8 то L=9 9+8=17 уже больше 13  не подходит.
m=6 ,то  минимальная сумма m+l+k=6+7+8=21>13 невозможно
m=4 минимальная сумма m+l+k=4+5+6=15>13 не  подходит
То  есть  m=2
То  возможно что k+l=11 для того  что бы  оно было наибольшим  из возможных возьмем k=9 l=2
То  есть это  число 922 но  нельзя  тк  цифры повторяются  тогда возьмем k=8 l=3
То число 832
Ответ:832



Вас заинтересует