угол между двумя радиусами в 4 раза больше, чем угол между хордой, стягивающей концы этих радиусов, и одним из радиусов.Найдите длину меньшей из дуг,стягиваемых этой хордой, если площадь сектора, ограниченного меньшей дугой равна 48π см²
Ответы
Ответ дал:
0
Треугольник, образованный радиусами и хордой - равнобедренный. Углы при основании обозначим через х, тогда угол при вершине 4х
Сумма углов треугольника 180°.
Уравнение:
х+х+4х= 180
6х= 180
х=30
Угла при основании 30°, угол между радиусами 120°
Площадь сектора с углом в 120°:

По условию это равно 48π.
Составляем уравнение

R²=144
R=12

Сумма углов треугольника 180°.
Уравнение:
х+х+4х= 180
6х= 180
х=30
Угла при основании 30°, угол между радиусами 120°
Площадь сектора с углом в 120°:
По условию это равно 48π.
Составляем уравнение
R²=144
R=12
Вас заинтересует
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад