доказать что в треугольнике угол между биссектрисой и высотой исходящей из одной вершины равен полуразности углов при двух других вершинах
Ответы
Ответ дал:
0
1. Нарисуйте чертеж.
2. Угол между биссектрисой и высотой обозначьте за X.
3. Угол между высотой и ближней к ней стороной Δ - за Y.
4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y.
5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ.
6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X.
7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).
2. Угол между биссектрисой и высотой обозначьте за X.
3. Угол между высотой и ближней к ней стороной Δ - за Y.
4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y.
5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ.
6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X.
7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад