• Предмет: Алгебра
  • Автор: moybred
  • Вопрос задан 10 лет назад

Доказать, что уравнение (x)2 -(y)2 = 30 не имеет решения в целых числах(т.е. когда x, y целые)

Ответы

Ответ дал: armen98
0

наверно здесь x и y в квадрате. Степени пишутся так (a+b)^(x+y). Это значит a+b в степение x+y. Теперь к задаче

При делении на 4 квадраты чисел могут давать остаток 0 или 1. Действительно:

для четных - (2x)^(2)=4x^2 остаток равен 0

для нечетных чисел (2x+1)^(2)=4x^2+4x+1=4(x^2+x)+1 остаток 1.

Значит разность квадратов может давать остаток 1 или 0. Но 30 дает остаток 2 при делении на 4. Противоречие

Вас заинтересует