• Предмет: Геометрия
  • Автор: Egor040393
  • Вопрос задан 10 лет назад

Острый угол параллелограмма равен 40 градусов. Угол между высотам, проведёнными из вершины тупого угла, равен..?

Ответы

Ответ дал: dmital
0
Пусть в параллелограмме ABCD из тупого угла B проведены высоты BE и BF.

Раз угол A равен 40 градусам, соседний с ним угол D равен 180-40=140 градусам, так как сумма соседних углов параллелограмма равна 180 градусам. Рассмотрим четырехугольник BEDF. Сумма его углов равна 360 градусам. Три угла нам уже известны, тогда можно найти угол EBF - требуемый угол между высотами. Он равен 360-90-90-140=40 градусам.
Приложения:
Вас заинтересует