Ответы
Ответ дал:
0
Предположим, что существует рациональное число q∈Q такое, что q²=19.
Тогда, q=√19
√19 ∉Q (не является рациональным числом)
Следовательно, наше предположение неверно и не существует такого рационального числа, квадрат которого равнялся бы 19.
Что и требовалось доказать.
Тогда, q=√19
√19 ∉Q (не является рациональным числом)
Следовательно, наше предположение неверно и не существует такого рационального числа, квадрат которого равнялся бы 19.
Что и требовалось доказать.
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад