Второй, первый и третий члены арифметической прогрессии, разность которой отлична от нуля, образуют в указанном порядке геометрическую прогрессию. Найти
её знаменатель
Ответы
Ответ дал:
0
a₁;a₂=a₁+d;a₃=a₁+2d;
b₁=a₂=a₁+d; b₂=a₁=b₁q; b₃=b₁q²=a₃=a₁+2d;
q=b₂/b₁=a₁/(a₁+d);
q=b₃/b₂=(a₁+2d)/a₁;
a₁/(a₁+d)=(a₁+2d)/a₁⇒
a₁²=(a₁+d)·(a₁+2d);⇒a₁²=a₁²+a₁d+2a₁d+2d²;⇒2d²+3a₁d=0;
d(2d+3a₁)=0;⇒d≠0;
2d+3a₁=0; d=-3a₁/2;
q=[a₁+2(-3a₁/2)]/a₁=(a₁-3a₁)/a₁=-2a₁/a₁=-2;
q=-2
b₁=a₂=a₁+d; b₂=a₁=b₁q; b₃=b₁q²=a₃=a₁+2d;
q=b₂/b₁=a₁/(a₁+d);
q=b₃/b₂=(a₁+2d)/a₁;
a₁/(a₁+d)=(a₁+2d)/a₁⇒
a₁²=(a₁+d)·(a₁+2d);⇒a₁²=a₁²+a₁d+2a₁d+2d²;⇒2d²+3a₁d=0;
d(2d+3a₁)=0;⇒d≠0;
2d+3a₁=0; d=-3a₁/2;
q=[a₁+2(-3a₁/2)]/a₁=(a₁-3a₁)/a₁=-2a₁/a₁=-2;
q=-2
Вас заинтересует
2 года назад
7 лет назад
7 лет назад
9 лет назад