. На белой доске 5×5 Петя закрасил какие-то клетки синим цветом, а какие-то – красным (каждым цветом закрашена хотя бы одна клетка). Никакие две клетки красного и синего цвета не имеют общей стороны. Какое наибольшее число клеток могло быть закрашено?
Матов:
перезагрузи страницу если не видно
Ответы
Ответ дал:
20
1)Можно красить на подобии шахматной доски и тогда клеток закрашено будет 13 - это половина (25 / 2) всех клеток доски. все клетки не соприкасаются сторонами.
2)Но разрешается соприкасаться клеткам одного цвета, поэтому красим рядами, Ряд одного цвета, пропускаем, ряд снова красим одним цветом, пропускаем, и снова красим. Получим 3 ряда по 5 клеток и всего 15
3)Когда красим все одним цветом и 1 клетку другим. число соседей наименьшее у угловой клетки с общей стороной - 2. Их и только не красим
Поэтому 25 - 2 = 23
Ответ 23
2)Но разрешается соприкасаться клеткам одного цвета, поэтому красим рядами, Ряд одного цвета, пропускаем, ряд снова красим одним цветом, пропускаем, и снова красим. Получим 3 ряда по 5 клеток и всего 15
3)Когда красим все одним цветом и 1 клетку другим. число соседей наименьшее у угловой клетки с общей стороной - 2. Их и только не красим
Поэтому 25 - 2 = 23
Ответ 23
Ответ дал:
22
Тогда всего существует два вида расположения так что , какой та один из цветов будет располагаться с максимальным заполнением других цветов ,это боковые и краевые (все условия соблюдаются)
Расположим в бок к примеру один из цветов , значит для других будет , но при угловом расположений , и плюс сам цвет
Ответ
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
6 лет назад
6 лет назад