• Предмет: Алгебра
  • Автор: RomeG199
  • Вопрос задан 9 лет назад

помогите!!!!
Дана арифметическая прогрессия: 6; 10; 14; … . Найдите сумму первых пятидесяти её членов.Записаны первые три члена арифметической прогрессии: 20; 17; 14. Какое число стоит в этой арифметической прогрессии на 91-м месте?

Ответы

Ответ дал: Bl4zer
0
Мы знаем три члена. Надо найти разность прогрессии.
 a_{1} =20
 a_{2} =17
Разность между ними составляет:
d= a_{2} - a_{1} =17-20=-3
Сумма считается по формуле
 S_{n} = frac{2 a_{1}+( n-1)*d}{2} *n
 S_{50} = frac{2*20+49*(-3)}{2} *50 = frac{40-147}{2}*50=-107*25= -2675
Формула n-ного члена считаеться по формуле
 a_{n}=  a_{1} +d*(n-1)
 a_{91}=20+(-3)*(91-1)=20+(-3*90)=20-270=-250

Вас заинтересует