в треугольнике АВС высота СD делит угол С на два угла, причем угол АСD=25°, угол BCD=40°.
Высоты данного треугольника пересекаются в точке О. Найдите угол ВОС.
Ответы
Ответ дал:
0
CD ┴ AB ; <ACD =25° ;<BCD =40° .
BH ┴ AC ;O =CD ⋂ BH.
------------------------------
<BOC _?
Пусть вторая высота BH ,H∈[ AC ] .
Из прямоугольного (<BHC =90°) треугольника BHC <HBC =90° -<HCB =
90° -(<HCO +<BCO) * * * 90° -( =<ACD +<BCD) * * *
=90° -(25° +40°) =90° -65°=25°.
Из треугольника BOC :<BOC =180° -(<BCO +<OBC)
* * *=180°-(<BCD+<OBC) * * * =180°-(40°+25°) =180°-65°=115°.
* * * * * * * * * *
<BOC = <OHC +<HCO (как внешний угол треугольника OHC).
или иначе
<BOC = <BHC +<ACD =90° +25° =115° .
---------------------
Нужно рассматривать еще вариант <A > 90°.
BH ┴ AC ;O =CD ⋂ BH.
------------------------------
<BOC _?
Пусть вторая высота BH ,H∈[ AC ] .
Из прямоугольного (<BHC =90°) треугольника BHC <HBC =90° -<HCB =
90° -(<HCO +<BCO) * * * 90° -( =<ACD +<BCD) * * *
=90° -(25° +40°) =90° -65°=25°.
Из треугольника BOC :<BOC =180° -(<BCO +<OBC)
* * *=180°-(<BCD+<OBC) * * * =180°-(40°+25°) =180°-65°=115°.
* * * * * * * * * *
<BOC = <OHC +<HCO (как внешний угол треугольника OHC).
или иначе
<BOC = <BHC +<ACD =90° +25° =115° .
---------------------
Нужно рассматривать еще вариант <A > 90°.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад