• Предмет: Алгебра
  • Автор: Anna456anna
  • Вопрос задан 9 лет назад

Решить неравенство log x^2 (1/x + 2/x^2)<0

Приложения:

Ответы

Ответ дал: arsenlevadniy
0
log_{x^2} (frac{1}{x}+frac{2}{x^2}) textless  0, \ left[begin{array}{cc} left{begin{array}{ccc}frac{1}{x}+frac{2}{x^2} textgreater  0,\0 textless  x^2 textless  1,\frac{1}{x}+frac{2}{x^2} textgreater  1;end{array}right. \ left{begin{array}{ccc}frac{1}{x}+frac{2}{x^2} textgreater  0,\x^2 textgreater  1,\frac{1}{x}+frac{2}{x^2} textless  1;end{array}right. end{array}right.
left[begin{array}{cc} left{begin{array}{cc} left [ {{-1 textless  x textless  0,} atop {0 textless  x textless  1;}} right.\frac{1}{x}+frac{2}{x^2}-1 textgreater  0;end{array}right. \ left{begin{array}{ccc}frac{x+2}{x^2} textgreater  0,\ left [ {{x textless  -1,} atop {x textgreater  1;}} right. \frac{1}{x}+frac{2}{x^2}-1 textless  0;end{array}right. end{array}right.
left[begin{array}{cc} left{begin{array}{cc} left [ {{-1 textless  x textless  0,} atop {0 textless  x textless  1;}} right.\-x^2+x+2 textgreater  0;end{array}right. \ left{begin{array}{ccc} left { {{x+2 textgreater  0,} atop {xneq0;}} right. \ left [ {{x textless  -1,} atop {x textgreater  1;}} right. \-x^2+x+2 textless  0;end{array}right. end{array}right.
left[begin{array}{cc} left{begin{array}{cc} left [ {{-1 textless  x textless  0,} atop {0 textless  x textless  1;}} right.\(x+1)(x-2) textless  0;end{array}right. \ left{begin{array}{cc}  left [ {{-2 textless  x textless  -1,} atop {x textgreater  1;}} right. \(x+1)(x-2) textgreater  0;end{array}right. end{array}right.
left[begin{array}{cc} left{begin{array}{cc} left [ {{-1 textless  x textless  0,} atop {0 textless  x textless  1;}} right.\-1 textless  x textless  2;end{array}right. \ left{begin{array}{cc}  left [ {{-2 textless  x textless  -1,} atop {x textgreater  1;}} right. \ left [{ {{x textless  -1,} atop {x textgreater  2;}} right. end{array}right. end{array}right.
left[begin{array}{cccc} -1 textless  x textless  0,\0 textless  x textless  1,\-2 textless  x textless  -1,\x textgreater  2;end{array}right. \ xin(-2;-1)cup(-1;0)cup(0;1)cup(2;+infty).
Вас заинтересует