К числу прибавили сумму его цифр. К полученному числу прибавили сумму его цифр, и так далее. Когда в седьмой раз к числу прибавили сумму его цифр, получили 1000. С какого числа начали?
Ответы
Ответ дал:
0
Уровнение трехзначногт числа: 100a+10b+c, где a - число сотен, b - число десятков и x - числр единиц. Сумма цифр такого числа равна a+b+c. 100a+10b+c+7(a+b+c)=1000
107a+17b+8c=1000.
При b=c=0 получим 107a=1000, и тогда a=9.
При b=c=9 получим 107a+153+72=1000; 107a=775, получается a=7.При a=7: 749+17b+8c=1000; 17b+8c=251;
При b=c=9 получим 225≠251, следовательно, a≠7. При a=8 получаем 856+17b+8c=1000; 17b+8c=144; b=(144-8c)/17, c в промежутке между 0 и 9. Так как это число натуральное, подбираем такое с, чтобы дробь была целой. При с=1 и получаем b = 8. Это число 887. Ответ: 887.
Ответ дал:
0
Да. Извиняюсь.
Ответ дал:
0
Самое главное, что написал, что а (число едениц)=8.
Ответ дал:
0
Тоесть 7.
Ответ дал:
0
Ладно,большое спасибо)
Ответ дал:
0
Пожалуйста)))
Вас заинтересует
2 года назад
2 года назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад