в треугольнике авс ав=вс=14 см угол А= 30 градусов ВК перпендикуляр к плоскости треугольника и равен корень 15 см найдите расстояние от точки К до АС
Ответы
Ответ дал:
0
В равнобедренном треугольнике АВС угол при вершине С равен 120°, так как углы при основании в сумме равны 60° (они равны), а сумма внутренних углов треугольника равна 180°.
Тогда искомое расстояние от точки К к прямой АС - перпендикуляр, проведенный из точки К на ПРОДОЛЖЕНИЕ стороны АС за точку С.
В прямоугольном треугольнике CDB угол <BCD=60°, как смежный с <C=120°. <DBC=30° (сумма острых углов прямоугольного треугольника =90°). Катет DC лежит против угла 30° и равен половине гипотенузы СВ=10см, то есть DC=5см. Катет BD=√(CB²-DC²)=√(100-25)=√75см.
Тогда в прямоугольном треугольнике KBD по Пифагору имеем:
KD=√(BD²+BK²)=√(25*3+25*6)=15см.
Ответ: искомое расстояние равно 15см.
Вас заинтересует
2 года назад
2 года назад
3 года назад
9 лет назад
9 лет назад
9 лет назад