• Предмет: Математика
  • Автор: kulawok
  • Вопрос задан 7 лет назад

Двое рабочих, работая вместе, могут выкосить поле за 6 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй - за три дня?

Ответы

Ответ дал: artalex74
0

Ответ: 10 дней.

Пошаговое объяснение:

Примем всю работу за 1.

Пусть х - производительность I рабочего, у - производительность II рабочего.

При совместной работе всю работу они сделают за 6 дней, поэтому 6(х+у)=1. За 2 дня первый сделает 2х задания, а второй это же сделает за 3 дня, то есть 3у. Отсюда 2х=3у.

Получим систему begin {cases} 6(x+y)=1 \ 2x=3y end {cases}

begin {cases} 6x+6y=1 \ 2x-3y=0 end {cases} begin {cases} 6x+6y=1 \ 6x-9y=0 end {cases}  begin {cases} 15y=1 \ x=frac{3}{2}yend {cases} begin {cases} y=frac{1}{15} \ x=frac{1}{10} end {cases}

Время работы I рабочего есть frac{1}{x} =1:frac{1}{10} =10 дней

Приложения:
Вас заинтересует