• Предмет: Математика
  • Автор: AslbekKucharov
  • Вопрос задан 8 лет назад

Стороны треугольника равны 2,3 и 4. Найдите тангенс угла противолежащей стороне равной 3.​

Ответы

Ответ дал: valenivan
0

Решение задания приложено

Приложения:
Ответ дал: AslbekKucharov
0
Здравствуйте а почетче можно)?
Ответ дал: iosiffinikov
0

Ответ:

sqrt(15)*3/11

Пошаговое объяснение:

Можно так: по формуле Герона квадрат площади : S^2=p*(p-2)*(p-3)*(p-4)=4,5*0,5*1,5*2,5=(0,5^4)*9*3*5   Здесь полупериметр p=(3+4+2)/2=4,5

Площадь равна 0,25*3*sqrt(15)=0,75*sqrt(15)

sqrt(ххх) - корень квадратный из (ххх)

Площадь равна 2*4*sin(x)/2=4*sin(x)

sin(x)=0,75*sqrt(15)/4, где х угол напротив стороны 3.

tg(x)=sin(x)/sqrt(1-sin^2(x))=

0,75*sqrt(15)/((sqrt(1-15*9/256)*4)=

0,75*sqrt(15)/((sqrt(16-15*9/16))=3*sqrt(15)/(sqrt(121)=sqrt(15)*3/11

Приложения:
Вас заинтересует