• Предмет: Математика
  • Автор: ratnikovartemqa
  • Вопрос задан 8 лет назад

СРОЧНО!!!Решите пожалуйста Дифференциальное уравнение

Приложения:

Ответы

Ответ дал: alkorb
0

Решим сначала однотипное однородное ДУ

y''+2y'+y=0

Составляем характеристическое уравнение:

k²+2k+1=0

k _{1,2} =  - 1

Общее решение ОДУ:

y_0=(C_1+C_2x)e^{-x}

Заметим, что "кратный корень" правой части исходного уравнения: k=0, так как справа стоит -2х (то есть многочлен)

Но при решении характеристического уравнения получились другие корни (k=-1), поэтому на частное решение это никак не повлияет.

Частное решение ДУ— это общий вид правой части:

   widetilde{y} = Ax+B

Найдем 1 и 2-ю производные

widetilde{y}' = A \ widetilde{y}''= 0

Подставляем частное решение в исходное ДУ:

 widetilde{y}'' + 2 widetilde{y}' +  widetilde{y} =  - 2x  \  \ 0 + 2A +  Ax+B =  - 2x

Теперь приравниваем слагаемые:

Слева перед икс стоит А, справа перед икс стоит -2, значит

А=-2

Слева свободные члены: 2А+В, справа нет свободных членов, значит 0

2A+B=0

2*(-2)+B=0

-4+B=0

B=4

Тогда

widetilde{y} = Ax+B =  - 2x + 4

Решие данного ДУ:

y = y _{0}  +  widetilde{y} = (C_1+C_2x)e^{-x}  - 2x + 4 \  \ OTBET:  y = (C_1+C_2x)e^{-x}  - 2x + 4

Вас заинтересует