Парк имеет форму прямоугольника, одна сторона которого на 140 м длиннее другой. В каждой вершине прямоугольника расположен выход из парка. Длина самой короткой аллеи, которая соединяет противоположные выходы, равна 260 м. Найти ширину и длину парка. В ответе укажите сумму длины и ширины.
Ответы
Ответ дал:
2
Ответ:
340 м
Объяснение:
Как я понял, самая короткая дорога, соединяющая противоположные выходы - это диагональ прямоугольника.
Обозначим стороны a и b = 140+a. По теореме Пифагора
a^2 + b^2 = 260^2
a^2 + (140+a)^2 = 260^2
a^2 + a^2 + 280a + 140^2 - 260^2 = 0
2a^2 + 280a + 19600 - 67600 = 0
2a^2 + 280a - 48000 = 0 | делим на 2
a^2 + 140a - 24000 = 0
D/4 = (b/2)^2 - ac = 70^2 + 24000 = 4900 + 24000 = 28900 = 170^2
- не подходит
Значит, сторона а = 100 м, а сторона b = 100+140 = 240 м
В сумме получается 100 + 240 = 340 м
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад