• Предмет: Геометрия
  • Автор: коф26356
  • Вопрос задан 2 года назад

найдите объем прямой призмы, в основании которой лежит треугольник со сторонами 2 см и 6 см и углом между ними 30о, если высота призмы равна 5 см.
Если можно с рисунком. СРОЧНО!!!


MultikTV: Спасибо, за отметку.
коф26356: Не за что)Вам спасибо

Ответы

Ответ дал: Alyssa08
7

Ответ:

V призмы = 15 см³.

Объяснение:

Обозначим данную призму буквами ABCA_1B_1C_1.

CB = 2 см.

AB = 6 см.

\angle CBA = 30^{\circ}.

BB_1 = h = 5 см.

=====================================================

V призмы = S осн. \cdot h

h = 5 см, по условию.

S осн. = S \triangle CBA = \dfrac{1}{2} \cdot CB \cdot AB \cdot sin(CBA) = \dfrac{1}{2} \cdot 2 \cdot 6 \cdot sin(30^{\circ}) = 6 \cdot \dfrac{1}{2} = 3 см².

\Rightarrow V призмы = 3 \cdot 5 = 15 см³.

Приложения:
Вас заинтересует