• Предмет: Математика
  • Автор: анисик
  • Вопрос задан 10 лет назад

покажите что произведение суммы любых двух положительных чисел и суммы обратных величин не меньше 4

Ответы

Ответ дал: LFP
0
a>0, b>0 ---любые два числа...
нужно показать, что:
(a+b)(1/a + 1/b) >= 4
1 + a/b + b/a + 1 >= 4
(a^2 + b^2) / ab >= 2
a^2 + b^2 >= 2ab (знак неравенства не изменится, т.к. ab > 0)
a^2 + b^2 - 2ab >= 0
(a-b)^2 >= 0 ---очевидно... 
Вас заинтересует